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The weather research and forecasting (WRF) model and the maximum likeli-
hood ensemble filter (MLEF) data assimilation approach are used to examine
the potential impact of observations from the future Geostationary Operational
Environmental Satellite, generation R (GOES-R) on improving our knowledge
about clouds. Synthetic radiances are assimilated from the 10.35 µm channel of
the GOES-R advanced baseline imager (ABI) employing a ‘non-identical twins’
experimental setup. The experimental results are examined for an extratropical
cyclone named Kyrill that produced unusually strong winds, widespread damage
and fatalities in Western Europe in January 2007. The data assimilation problem is
especially challenging for this case, as there is a large error in the model-simulated
radiances resulting from incorrect cloud location. Although this problem is diffi-
cult to eliminate, data assimilation results indicate the potential of GOES-R data
to significantly reduce these errors.

1. Introduction

Current and new satellite missions provide a wealth of information to improve our
understanding of weather, climate, ocean and the Earth system in general. This study
is motivated by the needs of new satellite missions to undergo all necessary prepa-
rations well before the satellite launch in order to make sure that the observations
will be successfully used as soon as they become available. Data assimilation studies,
such as this one, are being employed to prepare methodologies capable of address-
ing the challenges of the new satellite missions. These methodologies should be able
to effectively assimilate the new satellite observations and quantify the information
content of the assimilated data. This study focuses on the data assimilation needs of
the next-generation series of Geostationary Operational Environmental Satellite, R
(GOES-R) mission, currently scheduled for launch in the year 2015. Our objective
is to explore the information content and further improve capabilities of the current
state-of-the-art data assimilation methods in order to extract maximum information
from the GOES-R data, especially in cloudy scenes.
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9638 D. Zupanski et al.

Data assimilation methods have been successfully used to assimilate various satellite
observations in order to improve weather, climate, ocean, hydrological and ecologi-
cal forecasts over several decades (L’Ecuyer et al. (2006), Reichle (2007), Carton and
Giese (2008), Hollingsworth et al. (2008), Jung et al. (2008), Keppenne et al. (2008)
and Migliorini et al. (2008) are some recent examples). It is commonly accepted that
satellite and other remote sensing observations are a major source of information for
today’s geophysical models due to wide spatial and high temporal coverage as com-
pared to the non-remote sensing (the so-called conventional) observations. Current
state-of-the-art data assimilation methods typically assimilate satellite radiances or
brightness temperatures, rather than derived model state parameters (retrievals). This
is mainly because the observation errors of the radiances/brightness temperatures
are better known (and are typically less biased) than the observation errors of the
retrievals.

One of the most difficult challenges of satellite data assimilation is assimilation
of satellite radiances in cloudy conditions. Some of the major difficulties arise from
the non-linear and often discontinuous character of modelled cloud-microphysical
processes and from largely unknown forecast error covariances of these processes.
Because of these and many other difficulties, the operational weather centres have
been assimilating clear sky (or cloud cleared) radiances for decades, thus discard-
ing important information about clouds and precipitation, as well as other atmo-
spheric variables, contained in the cloudy visible, infrared and microwave radiances
(more about the importance of assimilation of cloudy radiances can be found, e.g.
in Andersson et al. (2005) and Errico et al. (2007)). Nevertheless, cloudy satel-
lite retrievals can also bring important information about precipitation and clouds,
as demonstrated in the recent studies by Hou and Zhang (2007) and Lin et al.
(2007), where the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager
(TMI) and Special Sensor Microwave Imager (SSM/I) tropical rainfall observations
were assimilated.

Thanks to advancements in numerical modelling and data assimilation methods,
assimilation of cloudy radiances has advanced significantly in the last decade, espe-
cially in the atmospheric data assimilation applications. In a study by Chevallier
et al. (2004) cloud-affected satellite infrared radiances were successfully assimi-
lated using a variational data assimilation method. They pointed out that for
some cloud-affected channels of the METEOrological SATellite (METEOSAT)
and atmospheric infrared sounder (AIRS) instruments, the linearity assumption
might still be valid, thus these channels were easier to assimilate. In Vukicevic
et al. (2004, 2006) assimilation of the GOES imager brightness temperatures
into a cloud-resolving model was successfully performed, indicating clear bene-
fits in improved cloud analyses and short-term forecasts. It is important to note
that the four-dimensional variational (4D-Var) data assimilation approach used in
Vukicevic et al. (2004, 2006) involved an iterative minimization and non-linear
updates of the cloud state variables in fine spatial and temporal resolution, which
were helpful in alleviating some of the difficulties due to non-linearities of the
cloud-microphysical processes. In Bauer et al. (2006a,b) the approach called 1D-
Var + 4D-Var was introduced for assimilation of precipitation-affected microwave
radiances, which was also adopted for operational application at the European Centre
for Medium-Range Weather Forecasts (ECMWF). The two-step approach, where
satellite radiances are assimilated by the non-linear 1D-Var step to produce incre-
ments of total column water vapour, and then these increments are assimilated

D
ow

nl
oa

de
d 

by
 [

T
he

 N
as

a 
G

od
da

rd
 L

ib
ra

ry
] 

at
 0

8:
16

 0
6 

Se
pt

em
be

r 
20

12
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by the linear (so-called incremental) 4D-Var step, has proven better in handling
non-linearities than the incremental 4D-Var approach alone. In Weng et al. (2007)
rain-affected satellite microwave radiances from the Advanced Microwave Sounding
Unit (AMSU) and the Advanced Microwave Scanning Radiometer (AMSR-E) are
assimilated to improve hurricane vortex analysis. They used an approach called
hybrid variational (HVAR) scheme, which is similar to the ECMWF 1D-Var + 4D-
Var approach; however, they employed a different model, the fifth-generation
Pennsylvania State University–National Center for Atmospheric Research Mesoscale
Model (MM5) and its adjoint (Zou et al. 1998, Zou and Xiao 2000). The data
assimilation results indicated improved, more detailed, structures for the hurricane
warm core at the upper troposphere and enhanced lower-level wind speed and
upper-level divergence, thus highlighting the importance of assimilation of cloudy
satellite radiances.

Novel, ensemble-based, data assimilation methods hold a potential to overcome
some of the difficulties of cloud and precipitation assimilation, especially because of
the use of flow-dependent forecast error covariances and an improved treatment of
non-linearities (due to not using tangent linear and adjoint models). However, applica-
tions of the ensemble-based data assimilation methods to remote sensing observations
in general are still rare, and the experience with assimilation of cloudy satellite radi-
ances is, to our knowledge, non-existent. Nevertheless, the potential of these methods
to further improve the analysis and forecast of clouds and precipitation is evident
from the currently available studies (e.g. Liu et al. 2008, Meng and Zhang 2008,
Whitaker et al. 2008, Aksoy et al. 2009), which were performed using conventional
and/or some remote sensing observations. Therefore, further exploring the ensemble
data assimilation methods in cloud and precipitation assimilation should be well worth
the effort.

In this study, we report the results of a pilot study, performed to evaluate the poten-
tial of the ensemble data assimilation methods to extract maximum information from
the future GOES-R radiance observations in cloudy scenes. Through the use of infor-
mation measures based on the flow-dependent forecast error covariance matrix, we
define when and where the observed information is needed the most. This is in the
areas where the flow-dependent forecast uncertainty is the largest. We focus on the
impact of the observations from the advanced baseline imager (ABI), an instrument
that will have significant improvements upon the current GOES imager with more
spectral bands, higher spatial and temporal resolution, better navigation and more
accurate calibration (Schmit et al. 2005). It will also have improved temporal and spa-
tial resolution relative to those of the GOES-13/O/P sounders (Schmit et al. 2008).
Before using observed radiances, synthetic ABI radiances at 10.35 µm were assim-
ilated as a first step in this study. The 10.35 µm channel was selected because it is
a clean window channel, expected to be sensitive to the hydrometeors at the cloud
top, such as cloud ice and snow (Smith et al. 1992, Grasso and Greenwald 2004,
Grasso et al. 2008). Therefore, this channel is capable of providing information about
cloud-microphysical processes at the cloud tops.

2. Data assimilation approach

2.1 Basic equations

We employ a variant of the maximum likelihood ensemble filter (MLEF) data assim-
ilation approach, developed at Colorado State University (Zupanski 2005, Zupanski
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9640 D. Zupanski et al.

and Zupanski 2006, Zupanski et al. 2008). The MLEF seeks a maximum likelihood
solution of the posterior probability density function (PDF), which is equivalent to
seeking a minimum of the following cost function (under the standard assumption of
Gaussian PDFs for the observation and forecast errors):

J(x) = 1
2

(
x − xf

)T
P−1

f

(
x − xf

)
+ 1

2
[y − H(x)]T R−1 [y − H(x)] . (1)

The cost function (equation (1)) measures the differences between the model and the
observations, where vector y of dimension Nobs (number of observations) is the obser-
vation vector, vector x of dimension NS (model state dimension) is the model state
vector, non-linear operator H is an observation operator, matrix R is the observation
error covariance and matrix Pf is the forecast error covariance. The index ‘f ’ refers to
the forecast (used as a first guess). Superscript ‘T’ denotes transpose. The matrix Pf is
defined in a subspace spanned by ensemble forecast perturbations as

P1/2
f = (

pf
1 pf

2 . . . pf
NE

)
, pf

i = M(xa + pa
i ) − M(xa), (2)

where M denotes the non-linear forecast model, the superscript ‘a’ refers to the analy-
sis and NE is the number of ensembles. The vectors pa

i and pf
i represent columns of the

square roots of the analysis and forecast error covariances, respectively. The square
root of the analysis error covariance is defined at the analysis solution xa as

P1/2
a = P1/2

f

[
INE + (

Z(xa)
)T Z(xa)

]−1/2
, (3)

where INE is an NE × NE identity matrix and the matrix Z(xa) is the observation
perturbation matrix at the analysis solution, defined by the following equation:

Z(xa) = [ z1(xa) z2(xa) . . . zNE (xa) ] ,

zi(xa) = R−1/2
[
H(xa + pf

i) − H(xa)
]

. (4)

The inverse square root calculation in equation (3) is obtained via eigenvalue decom-
position of the matrix INE + Z(xa)TZ(xa). It is calculated as a symmetric square root,
which is unique (e.g. Wang et al. 2004, Zupanski 2005, Wei et al. 2006).

We also calculate, as a diagnostic, the so-called information matrix C, of dimensions
NE × NE, defined in ensemble subspace as

C = Z(xa)TZ(xa), (5)

which we use to calculate information measures, such as degrees of freedom for signal
(DFS) defined as d (e.g. Shannon and Weaver 1949, Rodgers 2000, Zupanski et al.
2007)

d =
NE∑
i=1

λ2
i

(1 + λ2
i )

, (6)

where index ‘i’ denotes an ensemble member and λ2
i are eigenvalues of the information

matrix C.
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Assimilating synthetic GOES-R radiances 9641

As an additional diagnostic, we also calculate analysis uncertainty in observation
locations and in terms of the observed variable (10.35 µm radiance in the experiments
presented) to be able to compare it with the actual analysis uncertainty, defined by
the differences between the analysis and the ‘truth’ (the ‘truth’ being defined by a
different forecast model in our ‘non-identical twins’ experimental setup). The analysis
uncertainty, defined as the standard deviation of the analysis errors (σ a

obs), is calculated
using the following formula

σ a
obs =

{
diag

[
R1/2G(xa)G(xa)TRT/ 2

]}1/ 2
, (7)

where ‘diag’ stands for diagonal of a matrix and the Nobs × NE matrix G consists of
column perturbation vectors gi(xa) defined by

G(xa) = [ g1(xa) g2(xa) . . . gNE (xa) ] ,
gi(xa) = R−1/2 [

H(xa + pa
i ) − H(xa)

]
. (8)

Note similarity between equations (8) and (4): the only difference is that for calculat-
ing matrix G the analysis perturbations pa

i are used, while for matrix Z the forecast
perturbations pf

i are employed. Note also that both the forecast perturbation vectors
[zi(xa)] and the analysis perturbation vectors [gi(xa)] are calculated using non-linear
observation operators H, in accordance with the non-linear character of the MLEF
algorithm.

Equations (1)–(6) are solved employing an iterative minimization (Zupanski 2005).
In addition, as demonstrated in Zupanski et al. (2008), assumptions of differ-
entiability, used in the standard gradient-based minimization methods, were not
necessary, thus this approach is considered adequate for non-linear and discontinu-
ous cloud-microphysical processes, which play an important role in the experiments of
this study.

2.2 Covariance localization

Covariance localization (e.g. Houtekamer and Mitchell 2001, Whitaker and Hamill
2002, Ott et al. 2004) is an effective way to account for the ‘missing degrees of freedom’
in ensemble-based data assimilation systems. By ‘missing degrees of freedom’ we mean
that the number of degrees of freedom in the model state variable is much larger than
the affordable ensemble size on a given computer. This often happens in applications
to complex weather forecast models where the size of the model state variable could
easily reach the order of 107–108, while the computationally feasible ensemble size can
hardly be increased beyond the order of 102. In our experiments the size of the model
state vector x is NS ≈ 3 × 107, thus it is several orders of magnitude larger than the
ensemble sizes employed (16 and 48 members).

We adopted the covariance localization approach based on the so-called ‘local
domains’, first proposed by Ott et al. (2004). In this approach, the entire model
domain is partitioned into smaller local domains and the analysis solution is defined
independently for each local domain. Due to the use of the globally defined forecast
error covariance (Pf), overlapping local domains and/or some kind of smoothing, the
assumption of ‘independent local domains’ is only partially enforced (e.g. Ott et al.
2004, Yang et al. 2009). The size of the local domains typically reflects the spatial
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9642 D. Zupanski et al.

scales of the processes being analysed (e.g. extratropical or tropical cyclones, ocean
currents, carbon transport), thus the assumption that the local domains are, to a
degree, independent is considered appropriate. This covariance localization approach
was successfully used, in slightly different variants, in many applications (e.g. Hunt
et al. 2007, Miyoshi and Yamane 2007, Yang et al. 2009, Zupanski 2009a,b). We use
the variant explained in Zupanski (2009a,b). Unlike in the original Ott et al. (2004)
approach, we use non-overlapping local domains, which ensure a well-posed mini-
mization problem in each local domain and provide a straightforward definition of
information measures, since each observation belongs to a single local domain and
thus contributes to the information measures uniquely (Zupanski 2009a). A disadvan-
tage of using non-overlapping local domains is in possible creations of discontinuities
at the boundaries between local domains (which could appear visible in the analysis
fields). To eliminate/reduce these discontinuities, smoothing of the analysis weights is
applied (e.g. Yang et al. 2009, Zupanski 2009a,b). The use of non-overlapping local
domains, in conjunction with the smoothing, provided a satisfactory solution to the
two contradictory requirements: to define a well-posed minimization problem over
each local domain and to reduce discontinuous transitions from one local domain
to another.

3. Model and data

In the data assimilation experiments of this study, we employ, as a forecast model,
the non-hydrostatic weather research and forecasting (WRF) model, which uses
the advanced research WRF (ARW) dynamical core (Wicker and Skamarock 2002,
Skamarock et al. 2005). The WRF-ARW model was configured with 15 km grid spac-
ing and 50 vertical levels, covering a domain of approximately 4500 km × 4500 km
centred over Germany. For initial and boundary conditions the National Centers
for Environmental Prediction (NCEP) Global Forecasts System (GFS) analyses
were used.

In terms of physics, the Betts–Miller–Janjic (BMJ) convective parameterization
(Betts 1986, Betts and Miller 1986, Janjic 1994) was utilized, and the Mellor–Yamada–
Janjic (Janjic 1994) planetary boundary layer (PBL) scheme was chosen. The effects of
radiative transfer for long- and short-wave radiation were treated by the rapid radiative
transfer model (Mlawer et al. 1997) and the Dudhia (1989) scheme, respectively. The
Mlawer scheme accounts for multiple bands, trace gasses and microphysics species,
while the Dudhia scheme accounts for simple downward integration and includes an
efficient cloudy and clear sky absorption and scattering. For microphysical processes a
single-moment, five-species, cloud-microphysical scheme (Schultz 1995) was used. The
scheme of Schultz (1995) has been modified to use the saturation adjustment method
of Asai (1965), to slow the melting rate of snow in air slightly warmer than freezing
and to allow for the formation of cloud liquid water in unsaturated grid volumes with
lapse rates approaching convective instability.

Regarding the observations, we focus our attention on synthetic radiances from
the infrared 10.35 µm channel of the future ABI instrument. We assimilate syn-
thetic observations because the real ABI 10.35 µm radiances are not yet available.
The synthetic observations were generated using a different forecast model, the
Colorado State University/Regional Atmospheric Modeling System (CSU/RAMS;
Cotton et al. 2003). As RAMS includes an advanced two-moment microphysical
scheme (Meyers et al. 1997, Saleeby and Cotton 2004), it was considered adequate to
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Assimilating synthetic GOES-R radiances 9643

generate realistic cloud-microphysical variables and, consequently, realistic synthetic
10.35 µm radiances. In Grasso et al. (2008) it was shown that synthetic GOES-R
ABI radiances based on the RAMS microphysical variables were quite reasonable. As
in Grasso et al. (2008) we create synthetic radiances by applying the satellite obser-
vation operator (developed by Greenwald et al. 2002, Grasso and Greenwald 2004)
to the RAMS microphysical variables. The observation operator includes a radiative
transfer model at infrared wavelengths based on the delta-Eddington 2-stream method
(Deeter and Evans 1998) and cloud optical property models at all non-visible bands,
based on modified anomalous diffraction theory (Mitchell 2000, 2002, Greenwald
et al. 2002), applied to both liquid and ice particles. It also includes a gas extinction
model: Optical Path TRANsmittance (OPTRAN; McMillin et al. 1995). The same
observation operator is applied to both RAMS and WRF outputs.

4. Synoptic case

The synoptic case chosen for this study is the extratropical cyclone named Kyrill,
which lasted during the period 15–19 January 2007. Due to unusually strong winds,
Kyrill caused widespread damage and fatalities in Western Europe, especially in
the United Kingdom and in Germany. In figure 1(a) and (b) we show infrared
METEOSAT imagery of Kyrill. The imagery in figure 1(a), valid at 1212 UTC 18
January 2007, corresponds to the beginning of the first data assimilation cycle and the
imagery in figure 1(b), valid at 1912 UTC 18 January 2007, corresponds to the end of
the seventh data assimilation cycle of the experiments presented. As the figures indi-
cate, there is a well-developed fast-moving cloud system associated with Kyrill. Note
that the METEOSAT data plotted in figure 1(a) and (b) are not assimilated in this
study. At present, we only use the METEOSAT data to illustrate the location and the
extent of the Kyrill cloud system. Assimilation of the infrared METEOSAT radiances
will be performed for the same synoptic case in the next stage of this research and
reported in a follow-up manuscript.

In the experiments of this study, we are focusing on the clouds associated with
Kyrill, since our goal is to assimilate cloudy ABI infrared radiance observations. The
strong winds of this system make the data assimilation problem more difficult since
the clouds are moving quickly and their exact locations are difficult to predict. We
anticipate that the use of flow-dependent forecast error covariance would be impor-
tant for this challenging problem, since it could assign larger uncertainties to the
cloud-affected areas.

5. Experimental design

The experimental design corresponds to the so-called ‘non-identical twins’ setup
because two different models are used: one (WRF) as a part of data assimilation,
and another (RAMS) to create observations. Unlike identical twins, the non-identical
twins imply that the forecast models are not perfect, thus achieving experimental
conditions resembling assimilation of the real ABI observations.

The WRF model is run over Europe, to capture the extratropical cyclone Kyrill.
The horizontal grid spacing of the model is 15 km and there are 50 vertical levels. The
synthetic 10.35 µm radiances are created with a footprint of 15 km and assimilated
into the system every hour (i.e. data assimilation interval was 1 hour). Note that real
ABI observations will be available in higher resolution (0.5–2 km), thus this exper-
iment simulates the conditions of assimilation of observations that were thinned to
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9644 D. Zupanski et al.

Figure 1. METEOSAT infrared satellite imagery of Kyrill, from 18 January 2007 at (a) 1212
UTC and (b) 1912 UTC. Note that negative longitude numbers refer to the east longitude
(e.g. −60 means 60◦ E).

approximately match the resolution of the forecast model. Data thinning is often done
in routine assimilation of satellite observations at operational meteorological centres
to reduce the computational time and storage.

In the experiments presented we used two different ensemble sizes, 16 and 48, and
employed two different sets of control variables: with and without cloud ice.

6. Results

6.1 Selecting control variables

We selected the following model state variables as control variables of data assimi-
lation: potential temperature, specific humidity and five hydrometeors (cloud water,
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Assimilating synthetic GOES-R radiances 9645

cloud ice, rain, snow and graupel). We selected these control variables because we
expected that they would play significant roles in the cloud-microphysical processes
(described by the Schultz microphysical scheme). Then, we performed sensitivity
experiments by excluding one control variable at a time and by examining the impact
of the absence of this control variable on the data assimilation results. The purpose of
these experiments was to evaluate how important is the choice of the control variables
for maximizing information from the assimilated observations.

Our sensitivity experiments indicated that cloud ice and snow had more significant
impacts, as measured by improvements to both the data assimilation and the first guess
forecast, than the remaining three hydrometeors (cloud water, rain and graupel). As
an example, in figures 2–4, we summarize the impact of including/excluding cloud
ice into the control variable. The impact of snow was similar, but less pronounced.
The results shown in figures 2–4 are produced using all other initially selected con-
trol variables (potential temperature, specific humidity, cloud water, rain, snow and
graupel), with only cloud ice switching on and off. In figure 2 we show the first guess
and the analysis of potential temperature at 850 hPa and the corresponding analysis
increments (i.e. differences between the analysis and the first guess), obtained in the
experiments without and with using cloud ice as a component of the control variable.
In figure 2(a) the first guess (1-hour forecast) is given, in figure 2(b) and (c) the analy-
ses obtained without and with the cloud ice in the control variable are presented, and
in figure 2(d) and (e) the corresponding analysis increments are plotted. By compar-
ing figure 2(a) and (b) we can see that the potential temperature analysis, obtained
in the experiment without cloud ice in the control variable, is dramatically different
from the background in the area extending from the Alpine region, through northern
Mediterranean and southeastern Europe, towards the Scandinavian Peninsula. These
differences exceed 25 K in some points, as shown in figure 2(d). By examining fig-
ure 2(a) and (c) we can see that the potential temperature analysis, obtained in the
experiment with the cloud ice in the control variable (figure 2(c)), is not dramatically
different from the background (figure 2(a)). The analysis increments in figure 2(c) are
much smaller, with a maximum magnitude of 10 K.

The next question we pose is as follows. Are the large potential temperature analy-
sis increments, obtained in the experiment without including cloud ice in the control
variable, effective in making the forecast model closer to the observations? To answer
this question, we examine the results shown in figure 3. As seen in figure 3(a), the
differences between the first guess and the verification (‘observed’ 10.35 µm radi-
ances) are large, exceeding −0.06 and +0.05 W m−2 sr−1 cm in the cloudy areas, which
roughly corresponds to the errors between −60 and +50 K in brightness temperature.
The errors of such large magnitudes are due to modelled clouds being shifted with
respect to the ‘observed’ clouds. Because the radiative transfer model detects a warm
surface instead of a cold cloud top, and vice versa, the brightness temperature dif-
ferences are large. The first guess and the analysis errors in figure 3 indicate that the
WRF-produced clouds are shifted to southeast compared to the RAMS-produced (i.e.
‘observed’) clouds. Also note (figure 1(a) and (b)) that the real clouds of the extratrop-
ical cyclone Kyrill are generally in this area; however, there is a shift with respect to the
clouds obtained by any of the two models. The large differences in figure 3 (especially
the negative differences) were reduced due to data assimilation; in the experiment with
cloud ice in the control variable (figure 3(c)) the model is generally in better agree-
ment with the ‘observations’ than in the experiment without cloud ice in the control
variable (figure 3(b)). There is, however, a relatively large white area in central Europe
(around 51◦ N, 15◦ E) in figure 3(b), which has smaller errors than in the corresponding
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Figure 2. Potential temperature (K) at 850 hPa and the corresponding analysis increments,
obtained in the experiments without and with cloud ice in the control variable. The first guess
(1-hour forecast) is shown in (a), the analysis without cloud ice in the control variable is plotted
in (b) and the analysis with cloud ice in the control variable is given in (c). The corresponding
analysis increments are shown in (d) and (e) for the experiments without and with cloud ice in
the control variable, respectively.
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Figure 3. Differences calculated between the model-simulated and the ‘observed’ 10.35 µm
radiances for (a) the first guess forecast, (b) the analysis without cloud ice in the control variable
and (c) the analysis with cloud ice in the control variable. The differences correspond to the
end of the first data assimilation cycle (1300 UTC 18 January 2007). Units for radiances are
W m−2 sr−1 cm. The values of radiances are scaled by 100.

area in figure 3(c), thus indicating that inclusion of cloud ice into the control variable
resulted in increased errors in the radiance field in this area. A potential explanation
for this could be that the forecast error covariance for cloud ice was not perfect in this
area, since inadequate forecast error covariance could result in negative impact of data
assimilation (e.g. Morss and Emanuel 2002). Nevertheless, overall results indicate that
cloud ice had a more effective impact on improving the analysis than potential tem-
perature in this case, since the unrealistically large changes in potential temperature
were eliminated when the cloud ice was included into the control variable.

Finally, we show in figure 4(a) the cloud ice analysis increments at 600 hPa obtained
in the experiment with the cloud ice in the control variable, and in figure 4(b)
and (c), a quantitative measure of the amount of information of the assimilated obser-
vations, called DFS (equation (6)), obtained in the experiments without and with
cloud ice in the control variable. We present the 600 hPa level as an example of cloud
ice increments. Similar increments were obtained at other higher altitude levels, where
the amount of cloud ice was non-negligible. We can see, in figure 4(a), that the analysis
increments, ranging from −0.1 to 1.5 g kg−1, are present in central and southeastern
Europe, in the area of large disagreement between the model and observations. These
analysis increments are of rather large magnitude. The maximum value of 1.5 g kg−1
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Figure 4. (a) Cloud ice analysis increments (in units of g kg−1) at 600 hPa level obtained in
the experiment with cloud ice in the control variable in the first data assimilation cycle (1300
UTC 18 January 2007). Information content of the assimilated observations (degrees of freedom
for signal (DFS), equation (6)) calculated in the same data assimilation cycle is shown for the
experiment without cloud ice in the control variable in (b) and for the experiment with cloud ice
in the control variable in (c). The DFS are non-dimensional quantities.

is about 3 times larger than the maximum value of cloud ice in the background field.
A possible explanation for large analysis increments is that there are still some impor-
tant components of the control variable missing (e.g. u, v and w wind components,
model error) which causes the existing control variable components to change by a
greater amount in order to fit the data. Nevertheless, these analysis increments do
not result in the ever-increasing amount of cloud ice, since the total amount of cloud
ice remains similar throughout all data assimilation cycles. On the other hand, when
excluding cloud ice from the control variable, larger changes in other hydrometeors
are obtained. For example, the results indicated that analysis increments for snow mix-
ing ratio become 2 to 3 times larger than in the experiment with cloud ice (figure not
shown). This is an indication that exclusion of radiatively active hydrometeors (such as
cloud ice) from the control variable might force other hydrometeors to account for the
missing impact of the cloud ice on the radiance field. We can also see, by comparing
figure 4(b) and (c), that introduction of cloud ice to the control variable results in sig-
nificantly increased information content of the assimilated observations, even though
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Assimilating synthetic GOES-R radiances 9649

the same observations were assimilated in both experiments. This is an indication that
the appropriate control variable must be chosen in order to extract more information
from the same observations.

Note that the DFS, shown in figure 4(b) and (c), have blocky structures. The DFS
are calculated as total numbers of DFS over each of 25 local domains (blocks), which
are the same local domains used for covariance localization (explained in §2.2). Even
though the information measures could be calculated for each model grid point (and
the blocky structures would disappear), we calculated them over the local domains,
thus to measure the information content contained in each local domain.

In summary, the results presented in figures 2–4 demonstrate that adjusting cloud
ice is of substantial importance for assimilation of the 10.35 µm radiances, in cases
when cloud ice is present at the cloud tops. These results also indicate that exclud-
ing cloud ice from the control variable results in unrealistic changes to the remaining
components of the control variable (e.g. potential temperature), since these remain-
ing components could never account, in a physically correct way, for the effect of the
cloud ice. This finding confirms indications from earlier studies (e.g. Smith et al. 1992,
Grasso and Greenwald 2004, Grasso et al. 2008) that the 10.35 µm channel should be
sensitive to cloud ice. For example, in Grasso and Greenwald (2004), it was demon-
strated that the 10.35 µm channel should be most sensitive to the hydrometeors at
the top of the thunderstorm. Since the top of the thunderstorm mostly contains the
cloud ice particles (also called pristine ice), the 10.35 µm channel basically measures
the cloud ice in this case. More generally, the results shown in figures 2–4 indicate that
it is imperative to include all radiatively active hydrometeors into the control variable
for maximizing the benefits of assimilated cloudy radiances and to avoid obtaining
degraded data assimilation results due to neglecting some of the important hydrom-
eteors. On the other hand, including microphysical variables to which the radiances
have little sensitivity (e.g. rain or graupel) had negligible impact on data assimilation,
thus these variables could be either included or excluded from the control variable. In
the experiments presented in the remainder of this article, we keep all initially selected
microphysical variables (potential temperature, specific humidity, cloud water, cloud
ice, rain, snow and graupel) as components of the control variable.

6.2 Data assimilation experiments over multiple data assimilation cycles

In figure 5, we present the root mean square (RMS) errors of the analysis and the
first guess, calculated with respect to the RAMS-simulated 10.35 µm radiances, as
functions of data assimilation cycles. For reference, the RMS errors of the experiment
without data assimilation are also included in figure 5. As seen in figure 5, both the
analysis and the first guess are in better agreement with the ‘truth’ than the experiment
without data assimilation. Furthermore, the analysis indicates clear improvements
with respect to the first guess, and the ensemble size of 48 members has smaller errors
than the ensemble size of 16 members. The errors in both data assimilation experi-
ments (with 16 and 48 members) generally decrease with time until around cycle 12,
when they saturate at a certain level (with the exceptions of increasing errors from
cycle 8 to 12 in some experiments). Note that the errors also decrease, at a slower rate,
in the experiment without data assimilation. This is because the influence of the hori-
zontal boundary conditions becomes more dominant with time. Since the same NCEP
analyses (from the Gridpoint Statistical Interpolation (GSI) system (Wu et al. 2002))
were used to create boundary conditions for both WRF and RAMS, the differences
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Figure 5. Root mean square (RMS) errors of the analysis (ANL, dashed lines) and the first
guess (FG, solid lines) calculated with respect to the Regional Atmospheric Modeling System
(RAMS)-simulated 10.35 µm radiances and plotted as functions of data assimilation cycles.
Results from the experiments with 16 and 48 ensemble members are shown (e.g. ‘FG 16 ens’
means ‘first guess from the experiment using 16 ensembles’). For reference, the RMS errors of
the experiment without data assimilation (NO ASSIM, solid line) are also included. Units for
radiances are W m−2 sr−1 cm.

between the two models decrease with time, and consequently the differences between
the WRF-simulated and the RAMS-simulated (i.e. ‘observed’) radiances decrease too.
In summary, figure 5 indicates a positive impact of data assimilation of the 10.35 µm
synthetic radiances on the analysis and short-term forecast and a positive impact of
the increased ensemble size, over 17 data assimilation cycles. We have not run data
assimilation experiments beyond 17 data assimilation cycles since the analysis and
forecast errors saturated around cycle 12 in all experiments.

We also show, in figure 6, the histogram of error distributions for the data assim-
ilation experiment with 48 ensemble members and the experiment without data
assimilation. By comparing the results from cycles 1 and 7, shown in panel 6(a) and (b),
respectively, we can see that the errors are clustering around zero in the later cycle (i.e.
cycle 7), indicating improvements in the first guess, the analysis and the no assimila-
tion experiment. The errors from the analysis and the first guess cluster more around
zero than the errors of the experiment without assimilation (note outliers in the pos-
itive errors for the no assimilation case). These results confirm a positive impact of
data assimilation on the analysis and short-term forecast improvements.

One can also see in figure 6(a) and (b) that the errors follow a Gaussian distribu-
tion reasonably well. This is an indication that the commonly used assumption about
Gaussian errors (and also used in this study) is reasonable in this case. Note, how-
ever, that cloudy satellite radiances could often depart from Gaussian distribution
(e.g. could follow log-normal distribution: cf. Grasso et al. (2010)). In such cases a
different cost function needs to be minimized as proposed in Fletcher and Zupanski
(2006a,b).

We now examine whether the actual analysis errors are in agreement with the
estimated analysis uncertainty. Examples of difference fields calculated between the
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Figure 6. Probability histogram of the errors of the 10.35 µm radiances, calculated with
respect to Regional Atmospheric Modeling System (RAMS)-simulated radiances, for the
first guess (FG), the analysis (ANL) and the experiment without assimilation (NO ASSIM).
Data assimilation experiments using ensemble size of 48 members are shown. Results from
first (a) and seventh (b) data assimilation cycles are presented. Units for radiances are
W m−2 sr−1 cm.

model-simulated radiances and the ‘observed’ radiances at 10.35 µm and the corre-
sponding analysis uncertainty σ a

obs(equation (7)) are shown in figures 7 and 8. The
differences are plotted for data assimilation cycle 7, valid at 1900 UTC 18 January
2007, and they correspond to the experiment without assimilation (i.e. old forecast,
figure 7(a)), the first guess (1-hour forecast after data assimilation, figure 7(b)) and
the analysis (figure 7(c)). As indicated before, there are large discrepancies between
the model and the ‘observations’ in areas over the Alps, the northern Mediterranean
and southeastern Europe. These discrepancies remain relatively large throughout the
entire period (17 data assimilation cycles); however, they are decreasing with time in
both experiments (with and without data assimilation), as the RMS errors in figure 5
indicate. Nevertheless, we can still see a pronounced dipole of positive–negative dif-
ferences (with maxima exceeding −0.06 or +0.05 W m−2 sr−1 cm) extending over the
Alps, the northern Mediterranean and southeastern Europe in figure 7(a) (experiment
without data assimilation).

The impact of data assimilation is to significantly reduce the magnitudes of the
large differences for the first guess (figure 7(b)) and to a lesser extent the analysis
(figure 7(c)). Note, however, that the large differences still remain in this area and
they appear in some additional areas (e.g. over the northern part of the Pyrenean
peninsula). Due to the non-identical twins setup we do not expect that the differences
should eventually become negligible throughout the entire model domain, as they
would in the identical twins setup. We do expect, however, that the method should be
able to assign realistic (i.e. large) uncertainties to the points where these differences are
large.

As we can see in figure 8(a), the analysis uncertainty is generally larger in the areas
where the analysis-minus-observations differences are larger (in figure 7(c)). We can
also see that the magnitudes of the analysis errors are in good agreement: for example,
there are areas of large analysis errors, exceeding ±0.04 W m−2 sr−1 cm, in figure 7(c)
(e.g. Alpine region, northern Mediterranean, southeastern and northeastern Europe),
and the estimated analysis uncertainty is generally in the range 3.5–5 W m−2 sr−1

cm in these areas. These results confirm that the MLEF calculated analysis uncer-
tainty is a good estimate of the actual analysis errors in terms of both the magnitude
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Figure 7. Differences, corresponding to the end of the seventh data assimilation cycle (1900
UTC 18 January 2007), calculated between the model-simulated and the ‘observed’ 10.35 µm
radiances for (a) the experiment without data assimilation (i.e. old forecast), (b) 1-hour forecast
used as a first guess in data assimilation and (c) the analysis. The units for radiances are W m−2

sr−1 cm. The values of radiances are scaled by 100. Line AB indicates location of the vertical
cross section shown in figure 9.
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Figure 8. Analysis uncertainty for the 10.35 µm radiances (σ a
obs, equation (7)) is plotted in (a)

and the corresponding DFS (equation (6)) is shown in (b). The results are given for the seventh
data assimilation cycle, thus are comparable to the results in figure 7. The units for radiances
are W m−2 sr−1 cm; however, the values are scaled by 100.
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and structure of the errors. In figure 8(b) we show an information measure, DFS
(equation (6)), calculated in data assimilation cycle 7. As the figure indicates, areas (i.e.
blocks) with large values of DFS generally coincide with the large analysis uncertainty
in figures 7(c) and 8(a). The results shown in figure 8(a) and (b) confirm the flow-
dependent character of the analysis error covariance and the information measures,
because the analysis errors and the information measures follow flow characteristics
of the Kyrill cloud system. Flow-dependent analysis and forecast error covari-
ance matrices are considered important ingredients of advanced data assimilation
systems.

Let us now examine the vertical cross section taken along the line AB (the location
of the cross section is shown in figures 7 and 8). As seen in figure 7, the cross section is
taken in the area where the differences between the model and the ‘observations’ are
large and they also change sign within the cross section. The analysis uncertainty and
the information measure (DFS) are also large in this area (see figure 8). We present
the vertical cross section of potential temperature and cloud ice in figure 9, including
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Figure 9. Vertical cross section taken along the line AB is shown in figures 7 and 8. Potential
temperature (shading) and cloud ice (contours) are shown in the figure. The results are valid
at the end of seventh data assimilation cycle (1900 UTC 18 January 2007). The ‘observations’
(RAMS forecasts) are given in panel (a), the forecast results from the experiment without assim-
ilation are shown in (b), the 3-hour background in (c) and the analysis in (d). Unit for potential
temperature is K and for cloud ice g kg−1.
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‘observations’ and model results. We can see that the model-produced potential tem-
perature is generally colder in the lower levels compared to the ‘observations’, and the
opposite is true for the upper levels. We also see large differences between the modelled
and the ‘observed’ cloud ice in both magnitudes and locations of the maximum values.
These differences got reduced due to data assimilation: modest changes in potential
temperature and more pronounced changes in cloud ice can be seen. For example, the
maximum of the cloud ice has moved westward in the first guess forecast (figure 9(c))
and the analysis (figure 9(d)), which is in better agreement with the ‘observations’
(figure 9(a)) than the maximum obtained in the experiment without data assimila-
tion (figure 9(b)). Nevertheless, significant discrepancies between the analysis and the
‘observations’ still exist (the maximum should be 2◦ farther west and the maximum in
the analysis is stronger than the observed (0.18 vs. 0.035 g kg−1)). These discrepancies
could be due to significant differences between the two models in both dynamical cores
and cloud-microphysical schemes, which are difficult to eliminate without altering the
models’ equations (e.g. without taking into account model errors).

Important to note is that the vertical structure of the cloud ice analysis (figure 9(d))
is generally in better agreement with the ‘observations’ than the first guess (figure 9(c))
and the experiment without assimilation (figure 9(b)). The figures indicate that the
cloud ice maximum got lifted to the upper levels (from around 500 hPa in the exper-
iment without assimilation to around 400 hPa in the experiment with assimilation).
The changes in the potential temperature field, even though marginal, when combined
with the more pronounced change in the vertical position of the cloud ice maximum,
resulted in significant changes in the radiance field. Thus, modifying cloud ice at
the upper, rather than lower, levels has larger impact on the radiance field since the
energy being radiated by the cloud ice to the satellite is less impeded. Our calcula-
tions also indicate that shifting the cloud ice maximum to the higher levels resulted
in the change of temperature in the area of the cloud ice maximum from (approxi-
mately) 257 to 243 K, which is closer to the ‘correct’ value of 249 K. This correction
might be quite significant for the model microphysics. In conclusion, the impact of
data assimilation is seen in more pronounced changes (which were also in the right
direction) in the cloud ice than in the potential temperature. These results are rea-
sonable, since the 10.35 µm radiance is expected to be more sensitive to the cloud
ice than to any other microphysical variable under the conditions of this experiment
(also confirmed in Grasso and Greenwald (2004) for a similar window channel of
10.7 µm).

7. Conclusions

In this study we assimilated synthetic GOES-R ABI radiances at 10.35 µm in cloudy
conditions to evaluate the potential impact of these observations on improving model-
simulated clouds. In particular, we were interested in extracting maximum information
from such observations by taking into account when and where this information is
needed the most. Our criteria for defining when and where the information is needed
the most were based on information theory and the use of information measures (such
as DFS). We have performed cycled data assimilation experiments for the case of the
extratropical cyclone Kyrill. This case was especially challenging because of the large
errors in model-simulated radiances due to spatially shifted clouds.

The experimental results indicated that the same GOES-R observations could bring
varying amounts of information, depending on the choice for the control variable in
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data assimilation. When cloud ice was included into the control variable, the infor-
mation content of data, as measured by DFS, was significantly increased and the
data assimilation results were much improved compared to the case without including
cloud ice into the control variable. The impact of data assimilation was also seen in
much more significant changes to the cloud ice than to other model state variables,
such as potential temperature. This is not surprising, since the 10.35 µm channel
is expected to be sensitive to the hydrometeors at the cloud top, but not sensitive
to the air temperature or potential temperature (e.g. Smith et al. 1992, Grasso and
Greenwald 2004). Therefore, our results indicated that it is imperative to include all
radiatively active hydrometeors into the control variable for maximizing the benefits of
assimilated cloudy radiances and to avoid obtaining degraded data assimilation results
due to neglecting some of the important hydrometeors. On the other hand, microphys-
ical variables to which the radiances have little sensitivity (e.g. rain or graupel) could
be either included or excluded from the control variable.

The data assimilation and short-term forecast results over multiple data assimilation
cycles have clearly indicated improvements due to assimilation of the GOES-R ABI
radiance ‘observations’, compared to the experiment without data assimilation. The
experimental results also indicated that the flow-dependent DFS used in this study
realistically reflect the actual forecast uncertainty: the values of DFS were the largest
in the areas of largest forecast errors. This is a confirmation that the data assimilation
method used in this study has the capability to maximize information content of the
assimilated observations.

In future work, we plan to further evaluate the capability of the MLEF approach,
and the ensemble-based data assimilation methods in general, to extract maxi-
mum information from real satellite observations. For this purpose we plan to
assimilate cloudy radiances similar to the future ABI radiances (e.g. from the
METEOSAT Second Generation – MSG and/or the AIRS instruments). We will
also apply the forecast model in finer spatial and temporal resolution (preferably
using the grid spacing of less than 10 km). This will provide more realistic con-
ditions for assimilating real satellite radiances in finer resolution and taking into
account small-scale processes (e.g. non-hydrostatic effects and cloud-microphysical
processes). This would potentially further improve assimilation of satellite radi-
ances in cloudy conditions. Assimilation of real satellite radiances could addi-
tionally be improved by including model error into the control variable (e.g. by
state augmentation as in Zupanski and Zupanski 2006), which is planned for the
future.
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